Fungsi Trigonometri Serta Contoh Soalnya

Fungi trigonometri merupakan suatu mata pelajaran yang ada di kelas XI. Namun trigonometri juga sudah pernah dipelajari di kelas X. Dan bahkan di kelas XII masih ada pelajaran yang menyangkut trigonometri. Wah begitu pentingnya kita belajar trigonometri ini. Mari kita pelajari lebih lanjut mengenai materi fungsi trigonometri melalui artikel ini.

Pengertian Fungsi Trigonometri

Fungsi Trigonometri
Sumber: Dokumentasi penulis

Fungsi trigonometri merupakan fungsi yang menggunakan trigonometri.  kita ketahui bahwa fungsi terdiri dari fungsi alajabar dan juga fungsi trigonometri. Dalam fungsi trigonometri ini kita tentu menggunakan aturan-aturan trigonometri. seperti aturan sin, cos dan tan. semua itu akan di bahas pada materi ini.

Baca juga: Transformasi Geometri, Translasi, Refleksi, Rotasi dan Dilatasi

Jenis-jenis fungsi trigonometri

Jenis-jenis fungsi trigonometri
Sumber: Dokumentasi penulis

Persamaan Trigonometri

Berikut adalah rumus dari persamaan trigonometri:

persamaan fungsi trigonometri
Sumber: Dokumentasi penulis

Tabel Trigonometri

Berikut adalah tabel trigonometri pada kuadran I

tabel trigonometri kuadran 1
Sumber: Dokumentasi penulis

Berikut adalah tabel tabel trigonometri pada kuadran II

tabel trigonometri kuadran II
Sumber: Dokumentasi penulis

Berikut adalah tabel tabel trigonometri pada kuadran III

Tabel trigonometri kuadran III
Sumber: Dokumentasi penulis

Berikut adalah tabel tabel trigonometri pada kuadran IV

Tabel trigonometri kuadran IV
Sumber: Dokumentasi penulis

Hal-hal yang perlu diperhatikan dalam fungsi trigonometri diantaranya:

fungsi trigonometri 2
Sumber: Dokumentasi penulis

Rumus dasar trigonometri

sin2 A + cos2 A = 1

1 + cot2 A = csc2 A

tan2 A + 1 = sec2 A

Rumus trigonometri (jumlah dan selisih sudut)

rumus jumlah dan selisih sudut
Sumber: Dokumentasi penulis

Rumus trigonometri perkalian

rumus perkalian trigonometri
Sumber: Dokumentasi penulis

Sifat-sifat trigonometri

Sifat trigonometri fleksibel dia dapat diubah kebentuk persamaan kuadrat yang bisa diselesaikan dengan faktorisasi. selain itu bisa menggunakan rumus abc. untuk memperlihatkan bagaiman bentukdari sifat trigonometri mari kita ikuti langkah di bawah ini.

Melengkapi persamaan trigonometri dengan memperhatikan siifat trigonometri

Fungsi f(x) = sin x dan g(x) = cos x adalah fungsi periodik yang berperiode dasar 360° = 2π. Sedangkan fungsi h(x) = tan x dan i(x) = cotan x adalah fungsi periodik yang berperiode dasar 180° = π. K adalah bilangan bulat, maka dapat diketahui sifat trigonometri :

sin (k 2π + A) = sin (k 2π + [π – A ]) = sin A

cos (k 2π + A) = cos (k 2π – A) = cos A

tan (k π + A) = tan A

csc (k 2π + A) = csc A

sec (k 2π + A) = sec A

cot (k π + A) = cot A

Bentuk kurva fungsi trigonometri atau grafik fungsi trigonometri

Suatu fungsi trigonometri f(x) harus terdefinisi pada daerah asalnya dengan nilai x adalah bilangan real.

Grafik fungsi trigonometri y = sin x untuk 0 ≤ x ≤ 2π

grafik sin x
Sumber: Dokumentasi penulis
Fungsi TrigonometriDomain xRange f(x)
f(x) = sin xR[-1, 1]

 

Grafik fungsi trigonometri y = cos x untuk 0 ≤ x ≤ 2π

grafik cos x
Sumber: Dokumentasi penulis
Fungsi TrigonometriDomain xRange f(x)
f(x) = cos xR[-1, 1]

 

Grafik fungsi trigonometri y = tan x untuk -3π / 2 ≤ x ≤ 3π / 2

grafik tan x
Sumber: Dokumentasi penulis
Fungsi TrigonometriDomain xRange f(x)
f(x) = tan xR – {(2n + 1) π/2}R

 

Grafik fungsi trigonometri y = csc x untuk -π  ≤ x ≤ 2π

grafik csc x
Sumber: Dokumentasi penulis
Fungsi TrigonometriDomain xRange f(x)
f(x) = cosec xR – {nπ}R – (-1, 1)

 

Grafik fungsi trigonometri y = sec x untuk -π / 2≤ x ≤ 2π

grafk sec x
Sumber: Dokumentasi penulis
Fungsi TrigonometriDomain xRange f(x)
f(x) = sec xR – {(2n + 1) π/2}R – (-1, 1)

 

Grafik fungsi trigonometri y = cot x untuk -3π / 2 ≤ x ≤ 3π / 2

grafik cotan x
Sumber: Dokumentasi penulis
Fungsi TrigonometriDomain xRange f(x)
f(x) = cot xR – {nπ}R

 

Himpunan Penyelesaian Persamaan Trigonometri

himpunan penyelesaian dari persamaan trigonometri dari 0° sampai dengan 360° atau 0 sampai dengan 2π menggunakan berbagai fungsi rumus trigonometri berikut ini.

Sinus

Jika sin px = sin a dengan p dan a dalah konstanta, maka

Dalam bentuk derajat :

HP Sinus
Sumber: Dokumentasi penulis

Cosinus

Jika cos px = cos a dengan p dan a dalah konstanta, maka

Dalam bentuk derajat :

Hp cos
Sumber: Dokumentasi penulis

Tangen

Jika tan px = tan a dengan p dan a dalah konstanta, maka

Dalam bentuk derajat :

HP tan
Sumber: Dokumentasi penulis

Cara Menyelesaian Persamaan Trigonometri yang dapat Dinyatakan dalam Persamaan Kuadrat.

Persamaan trigonometri untuk beberapa kasus dapat dirubah menjadi persamaan kuadrat yang memuat sinus, kosinus, atau tangen. Penyelesaiannya didapat dengan metode faktorisasi.

  • Buatlah persamaan trigonometri menjadi ke satu ruas sehingga = 0.
  • Buatlah persamaan trigonometri tersebut menjadi bentuk persamaan kuadrat.
  • Buatlah faktorisasi dari persamaam kuadrat trigonometri.
  • Temukan nilai x dengan rumus persamaan trigonometri sederhana pada interval tertentu

Cara Menyelesaian Persamaan Trigonometri Menggunakan Bentuk Cos (x – A) dengan Interval Tertentu

cara menyelesaiakan Persamaan trigonometri dengan cos (x-A) dapat diubah menjadi bentuk persamaan yang memuat perkalian sinus atau kosinus. Persamaan trigonometri dalam bentuk a cos x + b sin x = c yang dapat diselesaikan dengan rumus trigonometri berikut ini :

Rumus persamaan trigonometri
Sumber: Dokumentasi penulis

Contoh Soal Fungsi Trigonometri

Untuk lebih memahami fungsi trigonometri mari kita pelajari contoh trigonometri dan pembahasan trigonometri berikut ini:

1. diketahui persamaan trigonometri sin 2x = cos 3x,  maka himpunan penyelesaiannya adalah….

Pembahasan:

sin 2x = cos 3x

sin 2x = sin (90° – 3x)

2x = 90° – 3x + k 360°

5x = 90° + k 360°

5x = 90°

x = 18

Atau

5x = 90° + 360°

x = 90

atau

5x = 90° + 720°

x = 162

atau

5x = 90° + 1080°

x = 234

Atau

5x = 90° + 1440°

x = 306

Himpunan penyelesaian dari sin 2x = cos 3x adalah (18°, 90°, 162°, 234°, 306°).

 

2. Tentukan himpunan penyelesaian dari persamaan 2 sin2 3x + 2 sin 3x = -4 !

Pembahasan:

2 sin2 3x + 2 sin 3x = -4

2 sin2 3x + 2 sin 3x + 4 = 0

sin2 3x + sin 3x + 2 = 0

(sin 3x + 2)(sin 3x – 1) = 0

sin 3x + 2

sin 3x = -2 (tidak bisa)

 

Atau

sin 3x – 1

sin 3x = 1 = sin 90

3x = 90

x  = 30

Himpunan penyelesaian dari 2 sin2 3x + 2 sin 3x = -4 adalah (30°).

 

3. Tentukan himpunan penyelesaian dari persamaan 3 cos x + 4 sin x = 5.

Pembahasan:

Rumus trigonometri

contoh soal dan pembahasan fungsi trigonometri
Sumber: Dokumentasi penulis

Baca juga: Program Linier dan Contoh Soal

Demikian lah materi fungsi trigonometri, bagaimana sudah pahamkah teman-teman dengan materinya. Jika belum paham silakan ulangi untuk memahami materinya. Semakin kita sering mengulang maka kita akan semakin bisa. Jadi tetap semangat ya teman-teman untuk mencapai cita-cita.


Daftar Pustaka

Kanginan, M., Hidayah, N.H, Akhmad. G. 2016. Matematika untuk siswa SMA/MA kelas XI Kelompok Peminatan dan Ilmu-ilmu Alam. Jakarta: Yrama Widya.

Sinaga, Bornok dkk. 2014. Matematika. Jakarta : Kementrian Pendidikan dan Kebudayaaan.

Sinaga, Bornok dkk. 2017. Matematika. Jakarta : Kementrian Pendidikan dan Kebudayaaan.

Artikel Terbaru

Yatini

Yatini

Hallo... saya Yatini, saya alumni Pendidikan Matematika UIN Raden Fatah Palembang. Teman-teman bisa belajar matematika melalui tulisan saya di sini atau bila kurang jelas atau paham bisa hubungi media sosial saya.

Tulis Komentar Anda

Your email address will not be published. Required fields are marked *